学术活动

当前位置: 首页 > 学术活动 > 学术报告 > 正文
报告人 蒋美跃 教授 (北京大学) 地点 腾讯会议室
时间 2023年6月6日 15:05-16:05

题目:A Variant of the Log Brunn-Minkowski Inequality

报告人:蒋美跃 教授 (北京大学)

时间:2023年6月6日 15:05-16:05

地点:腾讯会议室

摘要:Let K,L be symmetric convex bodies in R^n; h_K, h_L be the support functions of K,L, respectively, the following log Brunn-Minkowski inequality conjecture was proposed by Boroczky-Lutwak-Yang-Zhang (Adv. Math. 2012).

∫_(S^(n-1))〖log h_L/h_K 〗dV_K≥V(K)/n log V(L)/V(K) ,where V(L) and V(K) are the volumes of L and K, dV_K=1/n h_K dS_K with dS_K being the surface measure of K. They also showed that this is a stronger version of the classical Brunn-Minkowski inequality for symmetric convex bodies and the inequality (1) holds for n = 2.

In this talk after reviewing this inequality in 2-d we will propose and discuss a variant of this inequality for non-symmetric convex bodies and some related results.

参会方式:腾讯会议室

账号:740-784-601

All are welcome!


上一篇: Logarithmic Riemann-Hilbert Correspondence

下一篇: Anisotropic Moser-Trudinger Inequality and Its Related Inequalities