学术活动

当前位置: 首页 > 学术活动 > 学术报告 > 正文
报告人 Professor Deping Ye (Memorial University of Newfoundland) 地点 致远楼101室
时间 2023年5月30日15:30-16:30

题目:The Dual Minkowski Problem for Unbounded Closed Convex Sets

报告人:Professor Deping Ye (Memorial University of Newfoundland)

时间:2023年5月30日15:30-16:30

地点:致远楼101室

Abstract: A central problem in convex geometry is to characterize the surface area measure of convex bodies. This is the well-known Minkowski problem which has found fundamental applications in analysis, PDEs, computer sciences.  Similar questions can be asked for unbounded convex sets, which are closely related to log-concave functions and convex hypersurfaces. These unbounded convex sets play important roles in analysis, probability, algebraic geometry, etc. In this talk, I will talk about some recent progress on these problems with concentration on a special case: the dual Minkowski problem for unbounded closed convex sets. I will discuss how to set up  this problem and explain our existence of solutions to this problem.

Deping Ye

教授简介:2000年本科毕业于山东大学,2000-2003年在浙江大学读研,2009年博士毕业于美国Case Western Reserve University,现为加拿大Memorial University of Newfoundland终身教授,主持加拿大国家自然科学基金(NSERC)项目3项 。于2017年获得JMAA Ames奖。 长期从事凸几何分析,几何和泛函不等式, 随机矩阵,量子信息理论, 和统计学等领域的研究。 已在国际著名期刊 Comm. Pure Appl. Math., Adv. Math., Math. Ann., J. Funct. Anal.,Calc. Var. Partial Differential Equations 等杂志上发表论文近40篇。

欢迎广大师生参加!


上一篇: Riemannian Metrics with Prescribed Finite Parts of Spectra

下一篇: Family Index Theorem and Eta Form