当前位置: 首页 > 研究成果 > 科研项目 > 正文

论文题目:Fundamental classes in motivic homotopy theory

论文作者:F. Déglise, F. Jin*, A. Khan

发表刊物:J. Eur. Math. Soc.

成果介绍:We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated twisted bivariant theory, extending the formalism of Fulton and MacPherson. We import the tools of Fulton’s intersection theory into this setting: (refined) Gysin maps, specialization maps, and formulas for excess of intersection, self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in this setting. For the Milnor–Witt spectrum recently constructed by Déglise–Fasel, we get a bivariant theory extending the Chow–Witt groups of Barge–Morel, in the same way the higher Chow groups extend the classical Chow groups. As another application we prove a motivic Gauss–Bonnet formula, computing Euler characteristics in the motivic homotopy category.

所属学科:基础数学

论文地址:

https://www.ems-ph.org/journals/show_abstract.php?issn=1435-9855&vol=23&iss=12&rank=3

上一篇: (高蒙蒙、芮和兵、宋林亮)A basis theorem for the affine Kauffman category and its cyclotomic quotients